Visualize Cells By Spatial And Dimension Coordinates in 2D

spatDimCellPlot()

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D.

spatDimCellPlot(...)

Arguments

Arguments passed on to spatDimCellPlot2D()

gobject

giotto object

show_image

show a tissue background image

gimage

a giotto image

image_name

name of a giotto image

plot_alignment

direction to align plot

spat_enr_names

names of spatial enrichment results to include

cell_annotation_values

numeric cell annotation columns

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use

dimension to use on x-axis

dim2_to_use

dimension to use on y-axis

sdimx

= spatial dimension to use on x-axis

sdimy

= spatial dimension to use on y-axis

cell_color_gradient

vector with 3 colors for numeric data

gradient_midpoint

midpoint for color gradient

gradient_limits

vector with lower and upper limits

select_cell_groups

select subset of cells/clusters based on cell_color parameter

select_cells

select subset of cells based on cell IDs

dim_point_shape

dim reduction points with border or not (border or no_border)

dim_point_size

size of points in dim. reduction space

dim_point_alpha

transparency of dim. reduction points

dim_point_border_col

border color of points in dim. reduction space

dim_point_border_stroke

border stroke of points in dim. reduction space

spat_point_shape

shape of points (border, no_border or voronoi)

spat_point_size

size of spatial points

spat_point_alpha

transparency of spatial points

spat_point_border_col

border color of spatial points

spat_point_border_stroke

border stroke of spatial points

dim_show_cluster_center

show the center of each cluster

dim_show_center_label

provide a label for each cluster

dim_center_point_size

size of the center point

dim_center_point_border_col

border color of center point

dim_center_point_border_stroke

stroke size of center point

dim_label_size

size of the center label

dim_label_fontface

font of the center label

spat_show_cluster_center

show the center of each cluster

spat_show_center_label

provide a label for each cluster

spat_center_point_size

size of the spatial center points

spat_center_point_border_col

border color of the spatial center points

spat_center_point_border_stroke

stroke size of the spatial center points

spat_label_size

size of the center label

spat_label_fontface

font of the center label

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

nn_network_name

name of NN network to use, if show_NN_network = TRUE

dim_edge_alpha

column to use for alpha of the edges

spat_show_network

show spatial network

spatial_network_name

name of spatial network to use

spat_network_color

color of spatial network

spat_network_alpha

alpha of spatial network

spat_show_grid

show spatial grid

spatial_grid_name

name of spatial grid to use

spat_grid_color

color of spatial grid

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

dim_other_point_size

size of not selected dim cells

spat_other_point_size

size of not selected spat cells

spat_other_cells_alpha

alpha of not selected spat cells

coord_fix_ratio

ratio for coordinates

cow_n_col

cowplot param: how many columns

cow_rel_h

cowplot param: relative height

cow_rel_w

cowplot param: relative width

cow_align

cowplot param: how to align

show_legend

show legend

legend_text

size of legend text

legend_symbol_size

size of legend symbols

dim_background_color

background color of points in dim. reduction space

spat_background_color

background color of spatial points

vor_border_color

border color for voronoi plot

vor_max_radius

maximum radius for voronoi ‘cells’

vor_alpha

transparency of voronoi ‘cells’

axis_text

size of axis text

axis_title

size of axis title

show_plot

show plot

return_plot

return ggplot object

save_plot

directly save the plot [boolean]

save_param

list of saving parameters, see showSaveParameters()

default_save_name

default save name for saving, don’t change, change save_name in save_param

Value

A ggplot.

Details

Description of parameters …

See also

For other spatial and dimension reduction cell annotation visualizations see: spatDimCellPlot2D()

Examples

data(mini_giotto_single_cell)

# combine all metadata
combineMetadata(mini_giotto_single_cell, spat_enr_names = 'cluster_metagene')
#>      cell_ID nr_genes perc_genes total_expr leiden_clus cell_types   sdimx
#>  1:   cell_2       13         65  111.98320           3     cell C 1589.47
#>  2:   cell_7       15         75  115.73030           3     cell C 1291.34
#>  3:  cell_12       11         55   95.49802           1     cell A 1183.07
#>  4:  cell_15       12         60   99.94782           3     cell C 1115.86
#>  5:  cell_17       13         65  111.32963           2     cell B 1074.92
#>  6:  cell_30       11         55   96.64302           3     cell C  882.00
#>  7:  cell_37        6         30   57.77777           2     cell B  618.20
#>  8:  cell_40        9         45   82.84693           2     cell B  565.40
#>  9:  cell_44        9         45   79.93838           2     cell B  417.40
#> 10:  cell_53        9         45   82.40747           1     cell A 1831.19
#> 11:  cell_64        8         40   73.06345           1     cell A 1839.07
#> 12:  cell_74       11         55   93.04295           3     cell C 1575.84
#> 13:  cell_85        8         40   73.72574           1     cell A 1440.75
#> 14:  cell_86       14         70  115.75186           1     cell A 1427.06
#> 15:  cell_90       11         55   93.02181           1     cell A 1351.50
#> 16:  cell_95        6         30   59.55714           1     cell A 1228.13
#> 17:  cell_96       10         50   88.31757           1     cell A 1210.65
#> 18: cell_107       16         80  130.62640           1     cell A  969.60
#> 19: cell_113       12         60   99.83100           2     cell B  874.30
#> 20: cell_118       14         70  117.63523           2     cell B  270.00
#>        sdimy        1        2        3
#>  1:  -669.51 3.144429 8.617638 5.853656
#>  2:  -957.71 4.088076 9.410168 4.427447
#>  3:  -950.97 2.899783 9.264667 2.785292
#>  4: -1021.40 4.058155 7.842009 3.405087
#>  5:  -391.16 6.413588 7.374390 2.629099
#>  6:  -668.36 2.989329 9.298030 2.823368
#>  7:  -894.70 7.222222 0.000000 0.000000
#>  8:  -421.27 5.933558 3.031319 2.865092
#>  9:  -669.71 8.067155 0.000000 2.566856
#> 10: -1090.20 2.183105 6.374428 4.449344
#> 11: -1458.00 0.985555 9.382938 1.480231
#> 12: -1829.60 1.715689 8.215992 5.003582
#> 13: -1298.30 0.000000 7.914246 4.373377
#> 14: -1401.00 3.790383 5.580052 8.658080
#> 15: -1923.80 1.839913 9.190628 3.859789
#> 16:  -739.38 2.523159 6.561978 0.000000
#> 17:  -374.81 3.737206 8.241875 1.494778
#> 18: -1198.50 4.579634 8.674903 6.989984
#> 19: -1127.00 5.564253 7.927811 1.291685
#> 20: -1383.30 9.142231 1.263504 6.152727
# visualize total expression information
spatDimCellPlot(mini_giotto_single_cell, cell_annotation_values = 'total_expr')
spatDimCellPlot spatDimCellPlot
# visualize enrichment results
spatDimCellPlot(mini_giotto_single_cell,
        spat_enr_names = 'cluster_metagene',
        cell_annotation_values = c('1','2'))
spatDimCellPlot spatDimCellPlot