Visualize Cells Expression By Dimension Coordinates

dimCellPlot()

Visualize cells according to dimension reduction coordinates.

dimCellPlot(
    gobject,
    ...
)

Arguments

gobject

giotto object

Arguments passed on to dimCellPlot2D()

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use

dimension to use on x-axis

dim2_to_use

dimension to use on y-axis

spat_enr_names

names of spatial enrichment results to include

cell_annotation_values

numeric cell annotation columns

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name

name of NN network to use, if show_NN_network = TRUE

cell_color_code

named vector with colors for cell annotation values

cell_color_gradient

vector with 3 colors for numeric data

gradient_midpoint

midpoint for color gradient

gradient_limits

vector with lower and upper limits

select_cell_groups

select subset of cells/clusters based on cell_color parameter

select_cells

select subset of cells based on cell IDs

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

other_point_size

size of not selected cells

show_cluster_center

plot center of selected clusters

show_center_label

plot label of selected clusters

center_point_size

size of center points

center_point_border_col

border color of center points

center_point_border_stroke

border stroke size of center points

label_size

size of labels

label_fontface

font of labels

edge_alpha

column to use for alpha of the edges

point_shape

point with border or not (border or no_border)

point_size

size of point (cell)

point_alpha

transparency of dim. reduction points

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend

show legend

legend_text

size of legend text

legend_symbol_size

size of legend symbols

background_color

color of plot background

axis_text

size of axis text

axis_title

size of axis title

cow_n_col

cowplot param: how many columns

cow_rel_h

cowplot param: relative height

cow_rel_w

cowplot param: relative width

cow_align

cowplot param: how to align

show_plot

show plot

return_plot

return ggplot object

save_plot

directly save the plot [boolean]

save_param

list of saving parameters, see showSaveParameters()

default_save_name

default save name for saving, don’t change, change save_name in save_param

Value

A ggplot.

Details

Description of parameters …

See also

For 3D plots see: dimCellPlot2D() and for other dimension reduction cell annotation visualizations see: dimCellPlot2D().

Examples

data(mini_giotto_single_cell)

# combine all metadata
combineMetadata(mini_giotto_single_cell, spat_enr_names = 'cluster_metagene')
#>      cell_ID nr_genes perc_genes total_expr leiden_clus cell_types   sdimx
#>  1:   cell_2       13         65  111.98320           3     cell C 1589.47
#>  2:   cell_7       15         75  115.73030           3     cell C 1291.34
#>  3:  cell_12       11         55   95.49802           1     cell A 1183.07
#>  4:  cell_15       12         60   99.94782           3     cell C 1115.86
#>  5:  cell_17       13         65  111.32963           2     cell B 1074.92
#>  6:  cell_30       11         55   96.64302           3     cell C  882.00
#>  7:  cell_37        6         30   57.77777           2     cell B  618.20
#>  8:  cell_40        9         45   82.84693           2     cell B  565.40
#>  9:  cell_44        9         45   79.93838           2     cell B  417.40
#> 10:  cell_53        9         45   82.40747           1     cell A 1831.19
#> 11:  cell_64        8         40   73.06345           1     cell A 1839.07
#> 12:  cell_74       11         55   93.04295           3     cell C 1575.84
#> 13:  cell_85        8         40   73.72574           1     cell A 1440.75
#> 14:  cell_86       14         70  115.75186           1     cell A 1427.06
#> 15:  cell_90       11         55   93.02181           1     cell A 1351.50
#> 16:  cell_95        6         30   59.55714           1     cell A 1228.13
#> 17:  cell_96       10         50   88.31757           1     cell A 1210.65
#> 18: cell_107       16         80  130.62640           1     cell A  969.60
#> 19: cell_113       12         60   99.83100           2     cell B  874.30
#> 20: cell_118       14         70  117.63523           2     cell B  270.00
#>        sdimy        1        2        3
#>  1:  -669.51 3.144429 8.617638 5.853656
#>  2:  -957.71 4.088076 9.410168 4.427447
#>  3:  -950.97 2.899783 9.264667 2.785292
#>  4: -1021.40 4.058155 7.842009 3.405087
#>  5:  -391.16 6.413588 7.374390 2.629099
#>  6:  -668.36 2.989329 9.298030 2.823368
#>  7:  -894.70 7.222222 0.000000 0.000000
#>  8:  -421.27 5.933558 3.031319 2.865092
#>  9:  -669.71 8.067155 0.000000 2.566856
#> 10: -1090.20 2.183105 6.374428 4.449344
#> 11: -1458.00 0.985555 9.382938 1.480231
#> 12: -1829.60 1.715689 8.215992 5.003582
#> 13: -1298.30 0.000000 7.914246 4.373377
#> 14: -1401.00 3.790383 5.580052 8.658080
#> 15: -1923.80 1.839913 9.190628 3.859789
#> 16:  -739.38 2.523159 6.561978 0.000000
#> 17:  -374.81 3.737206 8.241875 1.494778
#> 18: -1198.50 4.579634 8.674903 6.989984
#> 19: -1127.00 5.564253 7.927811 1.291685
#> 20: -1383.30 9.142231 1.263504 6.152727
# visualize total expression information
dimCellPlot(mini_giotto_single_cell, cell_annotation_values = 'total_expr')

# visualize enrichment results
dimCellPlot(mini_giotto_single_cell,
    spat_enr_names = 'cluster_metagene',
    cell_annotation_values = c('1','2'))