Visualize Gene Expression By Dimension Coordinates¶
-
dimGenePlot()
Visualize gene expression according to dimension reduction coordinates.
dimGenePlot(...)
Arguments¶
… |
Arguments passed on to dimGenePlot2D() |
---|---|
gobject |
giotto object |
expression_values |
gene expression values to use |
genes |
genes to show |
dim_reduction_to_use |
dimension reduction to use |
dim_reduction_name |
dimension reduction name |
dim1_to_use |
dimension to use on x-axis |
dim2_to_use |
dimension to use on y-axis |
show_NN_network |
show underlying NN network |
nn_network_to_use |
type of NN network to use (kNN vs sNN) |
network_name |
name of NN network to use, if show_NN_network = TRUE |
network_color |
color of NN network |
edge_alpha |
column to use for alpha of the edges |
scale_alpha_with_expression |
scale expression with ggplot alpha parameter |
point_shape |
point with border or not (border or no_border) |
point_size |
size of point (cell) |
point_alpha |
transparency of points |
cell_color_gradient |
vector with 3 colors for numeric data |
gradient_midpoint |
midpoint for color gradient |
gradient_limits |
vector with lower and upper limits |
point_border_col |
color of border around points |
point_border_stroke |
stroke size of border around points |
show_legend |
show legend |
legend_text |
size of legend text |
background_color |
color of plot background |
axis_text |
size of axis text |
axis_title |
size of axis title |
cow_n_col |
cowplot param: how many columns |
cow_rel_h |
cowplot param: relative height |
cow_rel_w |
cowplot param: relative width |
cow_align |
cowplot param: how to align |
show_plot |
show plots |
return_plot |
return ggplot object |
save_plot |
directly save the plot [boolean] |
save_param |
list of saving parameters, see showSaveParameters() |
default_save_name |
default save name for saving, don’t change, change |
Value¶
A ggplot.
Details¶
Description of parameters …
See also
dimGenePlot3D(). Other dimension reduction gene expression visualizations: dimGenePlot2D(), dimGenePlot3D().
Examples¶
data(mini_giotto_single_cell)
all_genes = slot(mini_giotto_single_cell, 'gene_ID')
selected_genes = all_genes[1:2]
dimGenePlot(mini_giotto_single_cell, genes = selected_genes, point_size = 3)