Mouse CODEX Spleen¶
Warning
This tutorial was written with Giotto version 0.3.6.9046, your version is 1.0.3. This is a more recent version and results should be reproducible.
Install Python and R Modules¶
To run this vignette you need to install all of the necessary Python modules.
Important
Python module installation can be done either automatically via our installation tool (from within R) (see step 2.2A) or manually (see step 2.2B).
See Part 2.2 Giotto-Specific Python Packages of our Giotto Installation section for step-by-step instructions.
Set-Up Giotto¶
library(Giotto)
Set A Working Directory¶
#results_folder = '/path/to/directory/'
results_folder = '/Volumes/Ruben_Seagate/Dropbox (Personal)/Projects/GC_lab/Ruben_Dries/190225_spatial_package/Results/Visium/Brain/201226_results//'
Set A Giotto Python Path¶
# set python path to your preferred python version path
# set python path to NULL if you want to automatically install (only the 1st time) and use the giotto miniconda environment
python_path = NULL
if(is.null(python_path)) {
installGiottoEnvironment()
}
Dataset Explanation¶
The CODEX data to run this tutorial can be found here. Alternatively you can use the getSpatialDataset to automatically download this dataset like we do in this example.
Goltsev et al. created a multiplexed datasets of normal and lupus (MRL/lpr) murine spleens using CODEX technique. The dataset consists of 30 protein markers from 734,101 single cells. In this tutorial, 83,787 cells from sample “BALBc-3” were selected for the analysis.
Download Dataset¶
# download data to working directory
# use method = 'wget' if wget is available. This should be much faster.
# if you run into authentication issues with wget, then add " extra = '--no-check-certificate' "
getSpatialDataset(dataset = 'codex_spleen', directory = results_folder, method = 'wget')
1. Giotto Global Instructions and Preparations¶
1.1 Optional: Set Giotto Instructions¶
instrs = createGiottoInstructions(show_plot = FALSE,
save_plot = TRUE,
save_dir = results_folder,
python_path = python_path)
1.2 Giotto Object¶
Create Giotto Object from the provided path
expr_path = paste0(results_folder, "codex_BALBc_3_expression.txt.gz")
loc_path = paste0(results_folder, "codex_BALBc_3_coord.txt")
meta_path = paste0(results_folder, "codex_BALBc_3_annotation.txt")
2. Create Giotto Object and Process Data¶
# read in data information
# expression info
codex_expression = readExprMatrix(expr_path, transpose = F)
# cell coordinate info
codex_locations = data.table::fread(loc_path)
# metadata
codex_metadata = data.table::fread(meta_path)
## stitch x.y tile coordinates to global coordinates
xtilespan = 1344;
ytilespan = 1008;
# TODO: expand the documentation and input format of stitchTileCoordinates. Probably not enough information for new users.
stitch_file = stitchTileCoordinates(location_file = codex_metadata, Xtilespan = xtilespan, Ytilespan = ytilespan);
codex_locations = stitch_file[,.(Xcoord, Ycoord)]
# create Giotto object
codex_test <- createGiottoObject(raw_exprs = codex_expression,
spatial_locs = codex_locations,
instructions = instrs,
cell_metadata = codex_metadata)
# subset Giotto object
cell_meta = pDataDT(codex_test)
cell_IDs_to_keep = cell_meta[Imaging_phenotype_cell_type != "dirt" & Imaging_phenotype_cell_type != "noid" & Imaging_phenotype_cell_type != "capsule",] $cell_ID
codex_test = subsetGiotto(codex_test, cell_ids = cell_IDs_to_keep)
## filter
codex_test <- filterGiotto(gobject = codex_test,
expression_threshold = 1,
gene_det_in_min_cells = 10,
min_det_genes_per_cell = 2,
expression_values = c('raw'),
verbose = T)
codex_test <- normalizeGiotto(gobject = codex_test, scalefactor = 6000, verbose = T,
log_norm = FALSE,library_size_norm = FALSE,
scale_genes = FALSE, scale_cells = TRUE)
## add gene & cell statistics
codex_test <- addStatistics(gobject = codex_test,expression_values = "normalized")
## adjust expression matrix for technical or known variables
codex_test <- adjustGiottoMatrix(gobject = codex_test,
expression_values = c('normalized'),
batch_columns = NULL,
covariate_columns = NULL,
return_gobject = TRUE,
update_slot = c('custom'))
## visualize
spatPlot(gobject = codex_test,point_size = 0.1,
coord_fix_ratio = NULL,point_shape = 'no_border',
save_param = list(save_name = '2_a_spatPlot'))
spatPlot(gobject = codex_test, point_size = 0.2,
coord_fix_ratio = 1, cell_color = 'sample_Xtile_Ytile',
legend_symbol_size = 3,legend_text = 5,
save_param = list(save_name = '2_b_spatPlot'))
3. Dimension Reduction¶
# use all Abs
# PCA
codex_test <- runPCA(gobject = codex_test, expression_values = 'normalized', scale_unit = T, method = "factominer")
signPCA(codex_test, scale_unit = T, scree_ylim = c(0, 3),
save_param = list(save_name = '3_a_spatPlot'))
plotPCA(gobject = codex_test, point_shape = 'no_border', point_size = 0.2,
save_param = list(save_name = '3_b_PCA'))
# UMAP
codex_test <- runUMAP(codex_test, dimensions_to_use = 1:14, n_components = 2, n_threads = 12)
plotUMAP(gobject = codex_test, point_shape = 'no_border', point_size = 0.2,
save_param = list(save_name = '3_c_UMAP'))
4. Cluster¶
## sNN network (default)
codex_test <- createNearestNetwork(gobject = codex_test, dimensions_to_use = 1:14, k = 20)
## 0.1 resolution
codex_test <- doLeidenCluster(gobject = codex_test, resolution = 0.5, n_iterations = 100, name = 'leiden',python_path = python_path)
codex_metadata = pDataDT(codex_test)
leiden_colors = Giotto:::getDistinctColors(length(unique(codex_metadata$leiden)))
names(leiden_colors) = unique(codex_metadata$leiden)
plotUMAP(gobject = codex_test,
cell_color = 'leiden', point_shape = 'no_border', point_size = 0.2, cell_color_code = leiden_colors,
save_param = list(save_name = '4_a_UMAP'))
spatPlot(gobject = codex_test, cell_color = 'leiden', point_shape = 'no_border', point_size = 0.2,
cell_color_code = leiden_colors, coord_fix_ratio = 1,label_size =2,
legend_text = 5,legend_symbol_size = 2,
save_param = list(save_name = '4_b_spatplot'))
5. Co-Visualize¶
spatDimPlot2D(gobject = codex_test, cell_color = 'leiden', spat_point_shape = 'no_border',
spat_point_size = 0.2, dim_point_shape = 'no_border', dim_point_size = 0.2,
cell_color_code = leiden_colors,plot_alignment = c("horizontal"),
save_param = list(save_name = '5_a_spatdimplot'))
6. Differential Expression¶
# resolution 0.5
cluster_column = 'leiden'
markers_scran = findMarkers_one_vs_all(gobject=codex_test, method="scran",
expression_values="norm", cluster_column=cluster_column, min_genes=3)
markergenes_scran = unique(markers_scran[, head(.SD, 5), by="cluster"][["genes"]])
plotMetaDataHeatmap(codex_test, expression_values = "norm", metadata_cols = c(cluster_column),
selected_genes = markergenes_scran,
y_text_size = 8, show_values = 'zscores_rescaled',
save_param = list(save_name = '6_a_metaheatmap'))
topgenes_scran = markers_scran[, head(.SD, 1), by = 'cluster']$genes
violinPlot(codex_test, genes = unique(topgenes_scran)[1:8], cluster_column = cluster_column,
strip_text = 8, strip_position = 'right',
save_param = list(save_name = '6_b_violinplot'))
# gini
markers_gini = findMarkers_one_vs_all(gobject=codex_test, method="gini", expression_values="norm",
cluster_column=cluster_column, min_genes=5)
markergenes_gini = unique(markers_gini[, head(.SD, 5), by="cluster"][["genes"]])
plotMetaDataHeatmap(codex_test, expression_values = "norm",
metadata_cols = c(cluster_column), selected_genes = markergenes_gini,
show_values = 'zscores_rescaled',
save_param = list(save_name = '6_c_metaheatmap'))
topgenes_gini = markers_gini[, head(.SD, 1), by = 'cluster']$genes
violinPlot(codex_test, genes = unique(topgenes_gini), cluster_column = cluster_column,
strip_text = 8, strip_position = 'right',
save_param = list(save_name = '6_d_violinplot'))
7. Cell-Type Annotation¶
clusters_cell_types = c('erythroblasts-F4/80(+) mphs','B cells','CD8(+) T cells',
'CD4(+) T cells', 'B cells','CD11c(+)MHCII(+) cells',
'CD4(+) T cells','Ter119(+)', 'marginal zone mphs',
'CD31(+)ERTR7(+)', 'FDCs', 'B220(+) DN T cells',
'CD3(+) other markers','NK cells','granulocytes',
'plasma cells','ambiguous','CD44(+)CD1632(+)Ly6C(+) cells')
names(clusters_cell_types) = c(1:18)
codex_test = annotateGiotto(gobject = codex_test, annotation_vector = clusters_cell_types,
cluster_column = 'leiden', name = 'cell_types')
plotMetaDataHeatmap(codex_test, expression_values = 'scaled',
metadata_cols = c('cell_types'),y_text_size = 6,
save_param = list(save_name = '7_a_metaheatmap'))
# create consistent color code
mynames = unique(pDataDT(codex_test)$cell_types)
mycolorcode = Giotto:::getDistinctColors(n = length(mynames))
names(mycolorcode) = mynames
plotUMAP(gobject = codex_test, cell_color = 'cell_types',point_shape = 'no_border', point_size = 0.2,
cell_color_code = mycolorcode,
show_center_label = F,
label_size =2,
legend_text = 5,
legend_symbol_size = 2,
save_param = list(save_name = '7_b_umap'))
spatPlot(gobject = codex_test, cell_color = 'cell_types', point_shape = 'no_border', point_size = 0.2,
cell_color_code = mycolorcode,
coord_fix_ratio = 1,
label_size =2,
legend_text = 5,
legend_symbol_size = 2,
save_param = list(save_name = '7_c_spatplot'))
8. Cell-Type Visualization and Gene Expression of Selected Zones¶
cell_metadata = pDataDT(codex_test)
subset_cell_ids = cell_metadata[sample_Xtile_Ytile=="BALBc-3_X04_Y08"]$cell_ID
codex_test_zone1 = subsetGiotto(codex_test, cell_ids = subset_cell_ids)
plotUMAP(gobject = codex_test_zone1,
cell_color = 'cell_types', point_shape = 'no_border', point_size = 1,
cell_color_code = mycolorcode,
show_center_label = F,
label_size =2,
legend_text = 5,
legend_symbol_size = 2,
save_param = list(save_name = '8_a_umap'))
spatPlot(gobject = codex_test_zone1,
cell_color = 'cell_types', point_shape = 'no_border', point_size = 1,
cell_color_code = mycolorcode,
coord_fix_ratio = 1,
label_size =2,
legend_text = 5,
legend_symbol_size = 2,
save_param = list(save_name = '8_b_spatplot'))
spatDimGenePlot(codex_test_zone1,
expression_values = 'scaled',
genes = c("CD8a","CD19"),
spat_point_shape = 'no_border',
dim_point_shape = 'no_border',
cell_color_gradient = c("darkblue", "white", "red"),
save_param = list(save_name = '8_c_spatdimplot'))
cell_metadata = pDataDT(codex_test)
subset_cell_ids = cell_metadata[sample_Xtile_Ytile=="BALBc-3_X04_Y03"]$cell_ID
codex_test_zone2 = subsetGiotto(codex_test, cell_ids = subset_cell_ids)
plotUMAP(gobject = codex_test_zone2, cell_color = 'cell_types',point_shape = 'no_border', point_size = 1,
cell_color_code = mycolorcode,
show_center_label = F,
label_size =2,
legend_text = 5,
legend_symbol_size = 2,
save_param = list(save_name = '8_d_umap'))
spatPlot(gobject = codex_test_zone2, cell_color = 'cell_types', point_shape = 'no_border', point_size = 1,
cell_color_code = mycolorcode,
coord_fix_ratio = 1,
label_size =2,
legend_text = 5,
legend_symbol_size = 2,
save_param = list(save_name = '8_e_spatPlot'))
spatDimGenePlot(codex_test_zone2,
expression_values = 'scaled',
genes = c("CD4", "CD106"),
spat_point_shape = 'no_border',
dim_point_shape = 'no_border',
cell_color_gradient = c("darkblue", "white", "red"),
save_param = list(save_name = '8_f_spatdimgeneplot'))