Cluster Cells¶
-
clusterCells()
Cluster cells using a variety of different methods.
clusterCells(
gobject,
cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
"sNNclust", "kmeans", "hierarchical"),
name = "cluster_name",
nn_network_to_use = "sNN",
network_name = "sNN.pca",
pyth_leid_resolution = 1,
pyth_leid_weight_col = "weight",
pyth_leid_part_type = c("RBConfigurationVertexPartition",
"ModularityVertexPartition"),
pyth_leid_init_memb = NULL,
pyth_leid_iterations = 1000,
pyth_louv_resolution = 1,
pyth_louv_weight_col = NULL,
python_louv_random = F,
python_path = NULL,
louvain_gamma = 1,
louvain_omega = 1,
walk_steps = 4,
walk_clusters = 10,
walk_weights = NA,
sNNclust_k = 20,
sNNclust_eps = 4,
sNNclust_minPts = 16,
borderPoints = TRUE,
expression_values = c("normalized", "scaled", "custom"),
genes_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
km_centers = 10,
km_iter_max = 100,
km_nstart = 1000,
km_algorithm = "Hartigan-Wong",
hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
"mcquitty", "median", "centroid"),
hc_k = 10,
hc_h = NULL,
return_gobject = TRUE,
set_seed = T,
seed_number = 1234
)
Arguments¶
Arguments passed on to select_NearestNetwork().
gobject |
giotto object |
cluster_method |
community cluster method to use |
name |
name for new clustering result |
nn_network_to_use |
type of NN network to use (kNN vs sNN) |
network_name |
name of NN network to use |
pyth_leid_resolution |
resolution for leiden |
pyth_leid_weight_col |
column to use for weights |
pyth_leid_part_type |
partition type to use |
pyth_leid_init_memb |
initial membership |
pyth_leid_iterations |
number of iterations |
pyth_louv_resolution |
resolution for louvain |
pyth_louv_weight_col |
python louvain param: weight column |
python_louv_random |
python louvain param: random |
python_path |
specify specific path to python if required |
louvain_gamma |
louvain param: gamma or resolution |
louvain_omega |
louvain param: omega |
walk_steps |
randomwalk: number of steps |
walk_clusters |
randomwalk: number of clusters |
walk_weights |
randomwalk: weight column |
sNNclust_k |
SNNclust: k neighbors to use |
sNNclust_eps |
SNNclust: epsilon |
sNNclust_minPts |
SNNclust: min points |
borderPoints |
SNNclust: border points |
expression_values |
expression values to use |
genes_to_use |
= NULL, |
dim_reduction_to_use |
dimension reduction to use |
dim_reduction_name |
name of reduction ‘pca’, |
dimensions_to_use |
dimensions to use |
distance_method |
distance method |
km_centers |
kmeans centers |
km_iter_max |
kmeans iterations |
km_nstart |
kmeans random starting points |
km_algorithm |
kmeans algorithm |
hc_agglomeration_method |
hierarchical clustering method |
hc_k |
hierachical number of clusters |
hc_h |
hierarchical tree cutoff |
return_gobject |
boolean: return giotto object (default = TRUE) |
set_seed |
set seed |
seed_number |
number for seed |
Value¶
Giotto object with new clusters appended to cell metadata
Details¶
Wrapper for the different clustering methods.