Cluster Cells¶
- 
clusterCells() 
Cluster cells using a variety of different methods.
clusterCells(
    gobject,
    cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
        "sNNclust", "kmeans", "hierarchical"),
    name = "cluster_name",
    nn_network_to_use = "sNN",
    network_name = "sNN.pca",
    pyth_leid_resolution = 1,
    pyth_leid_weight_col = "weight",
    pyth_leid_part_type = c("RBConfigurationVertexPartition",
        "ModularityVertexPartition"),
    pyth_leid_init_memb = NULL,
    pyth_leid_iterations = 1000,
    pyth_louv_resolution = 1,
    pyth_louv_weight_col = NULL,
    python_louv_random = F,
    python_path = NULL,
    louvain_gamma = 1,
    louvain_omega = 1,
    walk_steps = 4,
    walk_clusters = 10,
    walk_weights = NA,
    sNNclust_k = 20,
    sNNclust_eps = 4,
    sNNclust_minPts = 16,
    borderPoints = TRUE,
    expression_values = c("normalized", "scaled", "custom"),
    genes_to_use = NULL,
    dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
    dim_reduction_name = "pca",
    dimensions_to_use = 1:10,
    distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
        "manhattan", "canberra", "binary", "minkowski"),
    km_centers = 10,
    km_iter_max = 100,
    km_nstart = 1000,
    km_algorithm = "Hartigan-Wong",
    hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
        "mcquitty", "median", "centroid"),
    hc_k = 10,
    hc_h = NULL,
    return_gobject = TRUE,
    set_seed = T,
    seed_number = 1234
)
Arguments¶
Arguments passed on to select_NearestNetwork().
gobject  | 
giotto object  | 
cluster_method  | 
community cluster method to use  | 
name  | 
name for new clustering result  | 
nn_network_to_use  | 
type of NN network to use (kNN vs sNN)  | 
network_name  | 
name of NN network to use  | 
pyth_leid_resolution  | 
resolution for leiden  | 
pyth_leid_weight_col  | 
column to use for weights  | 
pyth_leid_part_type  | 
partition type to use  | 
pyth_leid_init_memb  | 
initial membership  | 
pyth_leid_iterations  | 
number of iterations  | 
pyth_louv_resolution  | 
resolution for louvain  | 
pyth_louv_weight_col  | 
python louvain param: weight column  | 
python_louv_random  | 
python louvain param: random  | 
python_path  | 
specify specific path to python if required  | 
louvain_gamma  | 
louvain param: gamma or resolution  | 
louvain_omega  | 
louvain param: omega  | 
walk_steps  | 
randomwalk: number of steps  | 
walk_clusters  | 
randomwalk: number of clusters  | 
walk_weights  | 
randomwalk: weight column  | 
sNNclust_k  | 
SNNclust: k neighbors to use  | 
sNNclust_eps  | 
SNNclust: epsilon  | 
sNNclust_minPts  | 
SNNclust: min points  | 
borderPoints  | 
SNNclust: border points  | 
expression_values  | 
expression values to use  | 
genes_to_use  | 
= NULL,  | 
dim_reduction_to_use  | 
dimension reduction to use  | 
dim_reduction_name  | 
name of reduction ‘pca’,  | 
dimensions_to_use  | 
dimensions to use  | 
distance_method  | 
distance method  | 
km_centers  | 
kmeans centers  | 
km_iter_max  | 
kmeans iterations  | 
km_nstart  | 
kmeans random starting points  | 
km_algorithm  | 
kmeans algorithm  | 
hc_agglomeration_method  | 
hierarchical clustering method  | 
hc_k  | 
hierachical number of clusters  | 
hc_h  | 
hierarchical tree cutoff  | 
return_gobject  | 
boolean: return giotto object (default = TRUE)  | 
set_seed  | 
set seed  | 
seed_number  | 
number for seed  | 
Value¶
Giotto object with new clusters appended to cell metadata
Details¶
Wrapper for the different clustering methods.