Further Sub-Clustering of Cells Using NN-Network and Louvain Algorithm¶
-
doLouvainSubCluster()
Further sub-clustering of cells using a NN-network and the Louvain algorithm.
doLouvainSubCluster(
gobject,
name = "sub_louvain_clus",
version = c("community", "multinet"),
cluster_column = NULL,
selected_clusters = NULL,
hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
"normalized"),
hvg_min_perc_cells = 5,
hvg_mean_expr_det = 1,
use_all_genes_as_hvg = FALSE,
min_nr_of_hvg = 5,
pca_param = list(expression_values = "normalized", scale_unit = T),
nn_param = list(dimensions_to_use = 1:20),
k_neighbors = 10,
resolution = 0.5,
gamma = 1,
omega = 1,
python_path = NULL,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
)
Arguments¶
gobject |
giotto object |
name |
name for new clustering result |
version |
version of Louvain algorithm to use |
cluster_column |
cluster column to subcluster |
selected_clusters |
only do subclustering on these clusters |
hvg_param |
parameters for calculateHVG |
hvg_min_perc_cells |
threshold for detection in min percentage of cells |
hvg_mean_expr_det |
threshold for mean expression level in cells with detection |
use_all_genes_as_hvg |
forces all genes to be HVG and to be used as input for PCA |
min_nr_of_hvg |
minimum number of HVG, or all genes will be used as input for PCA |
pca_param |
parameters for runPCA |
nn_param |
parameters for parameters for createNearestNetwork |
k_neighbors |
number of k for createNearestNetwork |
resolution |
resolution for community algorithm |
gamma |
gamma |
omega |
omega |
python_path |
specify specific path to python if required |
nn_network_to_use |
type of NN network to use (kNN vs sNN) |
network_name |
name of NN network to use |
return_gobject |
boolean: return giotto object (default = TRUE) |
verbose |
verbose |
Value¶
Giotto object with new sub-clusters appended to cell metadata
Details¶
This function performs subclustering using the Leiden algorithm on selected clusters.
The systematic steps are:
Subset Giotto object
Identify highly variable genes
Run PCA
Create nearest neighbouring network
Do Louvain clustering
See also