Further Sub-Clustering of Cells Using NN-Network and Louvain Algorithm

doLouvainSubCluster()

Further sub-clustering of cells using a NN-network and the Louvain algorithm.

doLouvainSubCluster(
    gobject,
    name = "sub_louvain_clus",
    version = c("community", "multinet"),
    cluster_column = NULL,
    selected_clusters = NULL,
    hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
         "normalized"),
    hvg_min_perc_cells = 5,
    hvg_mean_expr_det = 1,
    use_all_genes_as_hvg = FALSE,
    min_nr_of_hvg = 5,
    pca_param = list(expression_values = "normalized", scale_unit = T),
    nn_param = list(dimensions_to_use = 1:20),
    k_neighbors = 10,
    resolution = 0.5,
    gamma = 1,
    omega = 1,
    python_path = NULL,
    nn_network_to_use = "sNN",
    network_name = "sNN.pca",
    return_gobject = TRUE,
    verbose = T
)

Arguments

gobject

giotto object

name

name for new clustering result

version

version of Louvain algorithm to use

cluster_column

cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param

parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg

minimum number of HVG, or all genes will be used as input for PCA

pca_param

parameters for runPCA

nn_param

parameters for parameters for createNearestNetwork

k_neighbors

number of k for createNearestNetwork

resolution

resolution for community algorithm

gamma

gamma

omega

omega

python_path

specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name

name of NN network to use

return_gobject

boolean: return giotto object (default = TRUE)

verbose

verbose

Value

Giotto object with new sub-clusters appended to cell metadata

Details

This function performs subclustering using the Leiden algorithm on selected clusters.

The systematic steps are:

  1. Subset Giotto object

  2. Identify highly variable genes

  3. Run PCA

  4. Create nearest neighbouring network

  5. Do Louvain clustering