Sub-Cluster Cells¶
- 
subClusterCells() 
Sub-cluster cells.
subClusterCells(
    gobject,
    name = "sub_clus",
    cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
    cluster_column = NULL,
    selected_clusters = NULL,
    hvg_param = list(reverse_log_scale = T, difference_in_cov = 1, expression_values =
        "normalized"),
    hvg_min_perc_cells = 5,
    hvg_mean_expr_det = 1,
    use_all_genes_as_hvg = FALSE,
    min_nr_of_hvg = 5,
    pca_param = list(expression_values = "normalized", scale_unit = T),
    nn_param = list(dimensions_to_use = 1:20),
    k_neighbors = 10,
    resolution = 1,
    n_iterations = 1000,
    gamma = 1,
    omega = 1,
    python_path = NULL,
    nn_network_to_use = "sNN",
    network_name = "sNN.pca",
    return_gobject = TRUE,
    verbose = T
)
Arguments¶
gobject  | 
giotto object  | 
name  | 
name for new clustering result  | 
cluster_method  | 
clustering method to use  | 
cluster_column  | 
cluster column to subcluster  | 
selected_clusters  | 
only do subclustering on these clusters  | 
hvg_param  | 
parameters for calculateHVG  | 
hvg_min_perc_cells  | 
threshold for detection in min percentage of cells  | 
hvg_mean_expr_det  | 
threshold for mean expression level in cells with detection  | 
use_all_genes_as_hvg  | 
forces all genes to be HVG and to be used as input for PCA  | 
min_nr_of_hvg  | 
minimum number of HVG, or all genes will be used as input for PCA  | 
pca_param  | 
parameters for runPCA  | 
nn_param  | 
parameters for parameters for createNearestNetwork  | 
k_neighbors  | 
number of k for createNearestNetwork  | 
resolution  | 
resolution  | 
n_iterations  | 
number of iterations to run the Leiden algorithm.  | 
gamma  | 
gamma  | 
omega  | 
omega  | 
python_path  | 
specify specific path to python if required  | 
nn_network_to_use  | 
type of NN network to use (kNN vs sNN)  | 
network_name  | 
name of NN network to use  | 
return_gobject  | 
boolean: return giotto object (default = TRUE)  | 
verbose  | 
verbose  | 
Value¶
Giotto object with new sub-clusters appended to cell metadata
Details¶
This function performs sub-clustering on selected clusters.
The systematic steps are:
subset Giotto object
identify highly variable genes
run PCA
create nearest neighboring network
do clustering
See also
doLouvainCluster_multinet, doLouvainCluster_community, and doLeidenCluster.