Cluster Cells Using Hierarchical Clustering¶
- 
doHclust() 
Cluster cells using hierarchical clustering algorithm.
ddoHclust(
    gobject,
    expression_values = c("normalized", "scaled", "custom"),
    genes_to_use = NULL,
    dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
    dim_reduction_name = "pca",
    dimensions_to_use = 1:10,
    distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
         "manhattan", "canberra", "binary", "minkowski"),
    agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
         "mcquitty", "median", "centroid"),
    k = 10,
    h = NULL,
    name = "hclust",
    return_gobject = TRUE,
    set_seed = T,
    seed_number = 1234
)
Arguments¶
gobject  | 
giotto object  | 
expression_values  | 
expression values to use  | 
genes_to_use  | 
subset of genes to use  | 
dim_reduction_to_use  | 
dimension reduction to use  | 
dim_reduction_name  | 
dimensions reduction name  | 
dimensions_to_use  | 
dimensions to use  | 
distance_method  | 
distance method  | 
agglomeration_method  | 
agglomeration method for hclust  | 
k  | 
number of final clusters  | 
h  | 
cut hierarchical tree at height = h  | 
name  | 
name for hierarchical clustering  | 
return_gobject  | 
boolean: return giotto object (default = TRUE)  | 
set_seed  | 
set seed  | 
seed_number  | 
number for seed  | 
Value¶
Giotto object with new clusters appended to cell metadata
Details¶
Description on how to use hierarchical clustering method.
Examples¶
data(mini_giotto_single_cell)
mini_giotto_single_cell = doHclust(mini_giotto_single_cell, k = 4, name = 'hier_clus')
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'hier_clus', point_size = 3)