Cluster Cells Using K-Means¶
- 
doKmeans() 
Cluster cells using kmeans algorithm.
doKmeans(
    gobject,
    expression_values = c("normalized", "scaled", "custom"),
    genes_to_use = NULL,
    dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
    dim_reduction_name = "pca",
    dimensions_to_use = 1:10,
    distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
        "manhattan", "canberra", "binary", "minkowski"),
    centers = 10,
    iter_max = 100,
    nstart = 1000,
    algorithm = "Hartigan-Wong",
    name = "kmeans",
    return_gobject = TRUE,
    set_seed = T,
    seed_number = 1234
)
Arguments¶
gobject  | 
giotto object  | 
expression_values  | 
expression values to use  | 
genes_to_use  | 
subset of genes to use  | 
dim_reduction_to_use  | 
dimension reduction to use  | 
dim_reduction_name  | 
dimensions reduction name  | 
dimensions_to_use  | 
dimensions to use  | 
distance_method  | 
distance method  | 
centers  | 
number of final clusters  | 
iter_max  | 
kmeans maximum iterations  | 
nstart  | 
kmeans nstart  | 
algorithm  | 
kmeans algorithm  | 
name  | 
name for kmeans clustering  | 
return_gobject  | 
boolean: return giotto object (default = TRUE)  | 
set_seed  | 
set seed  | 
seed_number  | 
number for seed  | 
Value¶
Giotto object with new clusters appended to cell metadata
Examples¶
data(mini_giotto_single_cell)
mini_giotto_single_cell = doKmeans(mini_giotto_single_cell, centers = 4, name = 'kmeans_clus')
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'kmeans_clus', point_size = 3)