Identify Significant PCs¶
-
jackstrawPlot()
Identify significant principal components (PCs).
jackstrawPlot(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
genes_to_use = NULL,
center = FALSE,
scale_unit = FALSE,
ncp = 20,
ylim = c(0, 1),
iter = 10,
threshold = 0.01,
verbose = TRUE,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "jackstrawPlot"
)
Arguments¶
gobject |
giotto object |
expression_values |
expression values to use |
reduction |
cells or genes |
genes_to_use |
subset of genes to use for PCA |
center |
center data before PCA |
scale_unit |
scale features before PCA |
ncp |
number of principal components to calculate |
ylim |
y-axis limits on jackstraw plot |
iter |
number of interactions for jackstraw |
threshold |
p-value threshold to call a PC significant |
verbose |
show progress of jackstraw method |
show_plot |
show plot |
return_plot |
return ggplot object |
save_plot |
directly save the plot [boolean] |
save_param |
list of saving parameters from all_plots_save_function() |
default_save_name |
default save name for saving, don’t change, change |
Value¶
ggplot object for jackstraw method.
Details¶
The Jackstraw method uses the permutationPA() function. By systematically permuting genes it identifies robust, and thus significant, PCs.
Examples¶
Important
When using ‘jackstraw’ to identify significant PCs: If used in published research, please cite: Neo Christopher Chung and John D. Storey (2014). ‘Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics
# \donttest{
data(mini_giotto_single_cell)
# jackstraw package is required to run
jackstrawPlot(mini_giotto_single_cell, ncp = 10)
#> Estimating a number of significant principal component: #> 1 2 3 4 5 6 7 8 9 10 number of estimated significant components: 0
# }
ADD IMAGE