Identify Significant PCs

jackstrawPlot()

Identify significant principal components (PCs).

jackstrawPlot(
    gobject,
    expression_values = c("normalized", "scaled", "custom"),
    reduction = c("cells", "genes"),
    genes_to_use = NULL,
    center = FALSE,
    scale_unit = FALSE,
    ncp = 20,
    ylim = c(0, 1),
    iter = 10,
    threshold = 0.01,
    verbose = TRUE,
    show_plot = NA,
    return_plot = NA,
    save_plot = NA,
    save_param = list(),
    default_save_name = "jackstrawPlot"
)

Arguments

gobject

giotto object

expression_values

expression values to use

reduction

cells or genes

genes_to_use

subset of genes to use for PCA

center

center data before PCA

scale_unit

scale features before PCA

ncp

number of principal components to calculate

ylim

y-axis limits on jackstraw plot

iter

number of interactions for jackstraw

threshold

p-value threshold to call a PC significant

verbose

show progress of jackstraw method

show_plot

show plot

return_plot

return ggplot object

save_plot

directly save the plot [boolean]

save_param

list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don’t change, change save_name in save_param

Value

ggplot object for jackstraw method.

Details

The Jackstraw method uses the permutationPA() function. By systematically permuting genes it identifies robust, and thus significant, PCs.

Examples

Important

When using ‘jackstraw’ to identify significant PCs: If used in published research, please cite: Neo Christopher Chung and John D. Storey (2014). ‘Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics

# \donttest{

data(mini_giotto_single_cell)

# jackstraw package is required to run
jackstrawPlot(mini_giotto_single_cell, ncp = 10)

#> Estimating a number of significant principal component: #> 1  2  3  4  5  6  7  8  9  10  number of estimated significant components:  0
# }

ADD IMAGE