Run A PCA¶
-
runPCA()
Runs a Principal Component Analysis (PCA).
runPCA(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
name = "pca",
genes_to_use = "hvg",
return_gobject = TRUE,
center = TRUE,
scale_unit = TRUE,
ncp = 100,
method = c("irlba", "factominer"),
rev = FALSE,
set_seed = TRUE,
seed_number = 1234,
verbose = TRUE,
...
)
Arguments¶
gobject |
giotto object |
expression_values |
expression values to use |
reduction |
cells or genes |
name |
arbitrary name for PCA run |
genes_to_use |
subset of genes to use for PCA |
return_gobject |
boolean: return giotto object ( |
center |
center data first ( |
scale_unit |
scale features before PCA ( |
ncp |
number of principal components to calculate |
method |
which implementation to use |
rev |
do a reverse PCA |
set_seed |
use of seed |
seed_number |
seed number to use |
verbose |
verbosity of the function |
… |
additional parameters for PCA (see Details) |
Value¶
Giotto object with updated PCA dimension reduction.
Details¶
See prcomp_irlba() and PCA for more information about other parameters.
genes_to_use = NULL
: will use all genes from the selected matrixgenes_to_use = <hvg name>
: can be used to select a column name of highly variable genes, created by (see calculateHVG()).genes_to_use = c('geneA', 'geneB', ...)
: will use all manually provided genes
Examples¶
data(mini_giotto_single_cell)
# run PCA
mini_giotto_single_cell <- runPCA(gobject = mini_giotto_single_cell,
center = TRUE, scale_unit = TRUE)
#> hvg was found in the gene metadata information and will be used to select highly variable genes #> Warning: ncp >= minimum dimension of x, will be set to minimum dimension of x - 1
#> Warning: You're computing too large a percentage of total singular values, use a standard svd instead.#> Warning: did not converge--results might be invalid!; try increasing work or maxit
#>
#> pca has already been used, will be overwritten
# plot PCA results
plotPCA(mini_giotto_single_cell)