Run A UMAP¶
-
runUMAP()
Runs a UMAP (Uniform Manifold Approximation and Projection).
runUMAP(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
dim_reduction_to_use = "pca",
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
name = "umap",
genes_to_use = NULL,
return_gobject = TRUE,
n_neighbors = 40,
n_components = 2,
n_epochs = 400,
min_dist = 0.01,
n_threads = NA,
spread = 5,
set_seed = TRUE,
seed_number = 1234,
verbose = T,
...
)
Arguments¶
gobject |
giotto object |
expression_values |
expression values to use |
reduction |
cells or genes |
dim_reduction_to_use |
use another dimension reduction set as input |
dim_reduction_name |
name of dimension reduction set to use |
dimensions_to_use |
number of dimensions to use as input |
name |
arbitrary name for UMAP run |
genes_to_use |
if |
return_gobject |
boolean: return giotto object ( |
n_neighbors |
UMAP param: number of neighbors |
n_components |
UMAP param: number of components |
n_epochs |
UMAP param: number of epochs |
min_dist |
UMAP param: minimum distance |
n_threads |
UMAP param: threads/cores to use |
spread |
UMAP param: spread |
set_seed |
use of seed |
seed_number |
seed number to use |
verbose |
verbosity of function |
… |
additional UMAP parameters |
Value¶
Giotto object with updated UMAP dimension reduction
Details¶
See UMAP for more information about these and other parameters.
Input for UMAP dimension reduction can be another dimension reduction (
default = 'pca'
)To use gene expression as input set dim_reduction_to_use = NULL
If
dim_reduction_to_use = NULL
, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG()) or simply provide a vector of genesMultiple UMAP results can be stored by changing the name of the analysis
Examples¶
data(mini_giotto_single_cell)
mini_giotto_single_cell <- runUMAP(mini_giotto_single_cell,
dimensions_to_use = 1:3,
n_threads = 1,
n_neighbors = 3)
#>
#> umap has already been used, will be overwritten
plotUMAP(gobject = mini_giotto_single_cell)