Run A tSNE¶
-
runtSNE()
Runs a tSNE (t-distributed Stochastic Neighbor Embedding ).
runtSNE(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
dim_reduction_to_use = "pca",
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
name = "tsne",
genes_to_use = NULL,
return_gobject = TRUE,
dims = 2,
perplexity = 30,
theta = 0.5,
do_PCA_first = F,
set_seed = T,
seed_number = 1234,
verbose = TRUE,
...
)
Arguments¶
gobject |
giotto object |
expression_values |
expression values to use |
reduction |
cells or genes |
dim_reduction_to_use |
use another dimension reduction set as input |
dim_reduction_name |
name of dimension reduction set to use |
dimensions_to_use |
number of dimensions to use as input |
name |
arbitrary name for tSNE run |
genes_to_use |
if dim_reduction_to_use = NULL, which genes to use |
return_gobject |
boolean: return giotto object (default = TRUE) |
dims |
tSNE param: number of dimensions to return |
perplexity |
tSNE param: perplexity |
theta |
tSNE param: theta |
do_PCA_first |
tSNE param: do PCA before tSNE (default = FALSE) |
set_seed |
use of seed |
seed_number |
seed number to use |
verbose |
verbosity of the function |
… |
additional tSNE parameters |
Value¶
Giotto object with updated tSNE dimension recuction
Details¶
See Rtsne for more information about these and other parameters.
Input for tSNE dimension reduction can be another dimension reduction (
default = 'pca'
)To use gene expression as input set
dim_reduction_to_use = NULL
If dim_reduction_to_use = NULL, genes_to_use can be used to select a column name of highly variable genes (see calculateHVG) or simply provide a vector of genes
Multiple tSNE results can be stored by changing the name of the analysis
Examples¶
data(mini_giotto_single_cell)
mini_giotto_single_cell <- runtSNE(mini_giotto_single_cell,
dimensions_to_use = 1:3,
n_threads = 1,
n_neighbors = 3,
perplexity = 1)
#>
#> tsne has already been used, will be overwritten
plotTSNE(gobject = mini_giotto_single_cell)